当前位置: 首 页 - 师资队伍 - 教授 - 正文

翟起龙

发表于: 2021-04-23   点击: 


基本情况

姓名:翟起龙

性别:男

职称:教授

所在系别:计算数学

是否博导:是

最高学历:博士研究生

最高学位:博士

Email:zhaiql@jlu.edu.cn

详细情况

所在学科专业

计算数学

研究方向

偏微分方程数值解

讲授课程

数学分析习题、数值分析实习

教育经历

2013.9-2018.6 新葡的京集团8814博士

2009.9-2013.6 新葡的京集团8814本科

工作经历

2024.9-至今 新葡的京集团8814教授

2020.7-2024.9 新葡的京集团8814副教授

2018.7-2020.6 北京大学数学科学学院博士后

科研项目

[1] 2023-2026 多原子体系电子结构模拟的数值方法,国家自然科学基金面上项目,项目负责人

[2] 2020-2022 非线性特征值问题的高精度有限元方法国家自然科学基金青年基金项目项目负责人

[3] 2019-2020 电子结构计算的非标准有限元方法中国博士后科学基金特别资助项目负责人

[4] 2018-2020 偏微分方程特征值问题的高精度数值算法中国博士后科学基金面上项目一等资助项目负责人

学术论文

[1] Zhang, Ran; Zhai, Qilong, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order. J. Sci. Comput., 64 (2015), no. 2, 559-585.

[2] Zhai, Qilong; Zhang, Ran; Wang, XiaoShen, A hybridized weak Galerkin finite element scheme for the Stokes equations. Sci. China Math., 58 (2015), no. 11, 2455-2472.

[3] Wang, Ruishu; Wang, Xiaoshen; Zhai, Qilong; Zhang, Ran, A weak Galerkin finite element scheme for solving the stationary Stokes equations. J. Comput. Appl. Math., 302 (2016), 171-185.

[4] Zhai, Qilong; Zhang, Ran; Mu, Lin, A new weak Galerkin finite element scheme for the Brinkman model. Commun. Comput. Phys., 19 (2016), no. 5, 1409-1434.

[5] Zhang, Hongqin; Zou, Yongkui; Xu, Yingxiang;Zhai, Qilong; Yue, Hua, Weak Galerkin finite element method for second order parabolic equations. Int. J. Numer. Anal. Model., 13 (2016), no. 4, 525-544.

[6] Wang, Xiuli; Zhai, Qilong; Zhang, Ran, The weak Galerkin method for solving the incompressible Brinkman flow. J. Comput. Appl. Math., 307 (2016), 13-24.

[7] Zhai, Qilong; Ye, Xiu; Wang, Ruishu; Zhang, Ran, A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems, Comput. Math. Appl., 74(2017), no. 10, 2243-2252.

[8] Tian, Tian; Zhai, Qilong; Zhang, Ran, A new modified weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 329(2018), 268-279.

[9] Wang, Junping; Ye, Xiu; Zhai, Qilong; Zhang, Ran; Discrete maximum principle for the P1-P0 weak Galerkin finite element approximations. J. Comput. Phys. , 362(2018), 114-130.

[10] Wang, Junping; Wang, Ruishu; Zhai, Qilong; Zhang, Ran, A Systematic Study on Weak Galerkin Finite Element Methods for Second Order Elliptic Problems, J. Sci. Comput. , 74 (2018), no. 3, 1369-1396.

[11] Wang, Xiuli; Zhai, Qilong; Wang, Ruishu; Jari, Rabeea An absolutely stable weak Galerkin finite element method for the Darcy-Stokes problem. Appl. Math. Comput. , 331 (2018), 20-32.

[12] Zhai, Qilong; Zhang, Ran; Malluwawadu, Nolisa; Hussain, Saqib; The weak Galerkin method for linear hyperbolic equation. Commun. Comput. Phys., 24 (2018), no. 1, 152-166.

[13] Wang, Ruishu; Wang, Xiaoshen; Zhai, Qilong; Zhang, Kai; A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers. Numer. Methods Partial Differential Equations. , 34 (2018), no. 3, 1009-1032.

[14] Wang, Xiuli; Zhai, Qilong; Wang, Xiaoshen A class of weak Galerkin finite element methods for the incompressible fluid model. Adv. Appl. Math. Mech. , 11 (2019), no. 2, 360-380.

[15] Wang, Zhenhua; Zhai, Qilong; Chen, Wei; Wang, Xiaoliang; Lu, Yuyuan; An, lijia; Mechanism of nonmonotonic increase in polymer size: comparison between linear and ring chains at high shear rates. Macromolecules. , (52) 2019, no. 21, 8144-8154.

[16] Zhai, Qilong; Xie, Hehu; Zhang, Ran; Zhang, Zhimin; The weak Galerkin method for elliptic eigenvalue problems. Commun. Comput. Phys., 26 (2019), no. 1, 160-191.

[17] Zhai, Qilong; Zhang, Ran Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes. Discrete Contin. Dyn. Syst. Ser. B., 24 (2019), no. 1, 403-413.

[18] Peng, Hui; Wang, Xiuli; Zhai, Qilong; Zhang, Ran A weak Galerkin finite element method for the elliptic variational inequality. Numer. Math. Theory Methods Appl., 12 (2019), no. 3, 923-941.

[19] Wang, Junping; Zhai, Qilong; Zhang, Ran; Zhang, Shangyou; A weak Galerkin finite element scheme for the Cahn-Hilliard equation. Math. Comp. , 88 (2019), no. 315, 45-71.

[20] Zhai, Qilong; Xie, Hehu; Zhang, Ran; Zhang, Zhimin; Acceleration of Weak Galerkin Methods for the Laplacian Eigenvalue Problem. J. Sci. Comput., 79 (2019), no. 2, 914-934.

[21] Zhang, Qianru; Kuang, Haopeng; Wang, Xiuli; Zhai, Qilong; A hybridized weak Galerkin finite element method for incompressible Stokes equations. Numer. Math. Theory Methods Appl., 12 (2019), no. 4, 1012-1038.

[22] Wang, Xiuli; Zou, Yongkui; Zhai, Qilong; An effective implementation for Stokes equation by the weak Galerkin finite element method. J. Comput. Appl. Math., 370 (2020), 112586, 8 pp.

[23] Wang, Xiuli; Zhai, Qilong; Zhang, Ran; Zhang, Shangyou; The weak Galerkin finite element method for solving the time-dependent integro-differential equations. Adv. Appl. Math. Mech., 12 (2020), no. 1, 164-188.

[24] Zhai, Qilong; Tian, Tian; Zhang, Ran; Zhang, Shangyou; A symmetric weak Galerkin method for solving non-divergence form elliptic equations. J. Comput. Appl. Math., 372 (2020), 112693, 10 pp.

[25] Peng, Hui; Zhai, Qilong; Zhang, Ran; Zhang, Shangyou; Weak Galerkin and continuous Galerkin coupled finite element methods for the Stokes-Darcy interface problem. Commun. Comput. Phys., 28 (2020), no. 3, 1147-1175.

[26] Zhai, Qilong; Hu, Xiaozhe; Zhang, Ran; The shifted-inverse power weak Galerkin method for eigenvalue problems. J. Comput. Math., 38 (2020), no. 4, 606-605.

[27] Zhai, Qilong; Tian, Tian; Zhang, Ran; Zhang, Shangyou A symmetric weak Galerkin method for solving non-divergence form elliptic equations. J. Comput. Appl. Math., 372 (2020), 112693, 10 pp.

[28] Wang, Xiuli; Zhai, Qilong; Zhang, Ran; Zhang, Shangyou The weak Galerkin finite element method for solving the time-dependent integro-differential equations. Adv. Appl. Math. Mech., 12 (2020), no. 1, 164-188.

[29] Carstensen, Carsten; Zhai, Qilong; Zhang, Ran A skeletal finite element method can compute lower eigenvalue bounds. SIAM J. Numer. Anal., 58 (2020), no. 1, 109-124.

[30] Wang, Xiuli; Liu, Yuanyuan; Zhai, Qilong; The weak Galerkin finite element method for solving the time-dependent Stokes flow. Int. J. Numer. Anal. Model., 17 (2020), no. 5, 732-745.

[31] Li, Hong; Zhai, Qilong; Chen, Jeff Z. Y.; Neural-network-based multistate solver for a static Schrödinger equation. Phys. Rev. A., 103 (2021), 032405.

着作教材


获奖情况

[1] 2024 中国工业与应用数学学会 应用数学青年科技奖

[2] 2022 吉林省自然科学奖一等奖(第二完成人)

[3] 2022 中国工业与应用数学学会 青年人才托举工程项目

[4] 2020 新葡的京集团8814优秀青年教师培养计划

[5] 2020 天元优秀青年学者奖励计划

[6] 2019 东亚工业与应用数学学会学生论文奖一等奖

社会兼职


座右铭


上一篇: 刁怀安

下一篇: 李辉来