当前位置: 首 页 - 师资队伍 - 教授 - 正文

许志国

发表于: 2017-11-30   点击: 


基本情况

姓名:

许志国


性别:

职称:

教授

所在系别:

基础数学系

最高学历:

研究生

最高学位:

博士

Email:

xuzg2014@jlu.edu.cn




详细情况


 所在学科业:

基础数学

所研究方向:

微分方程与动力系统,可积系统,偏微分方程数值解

讲授课程:

常微分方程,常微分方程习题,动力系统,微积分,线性代数

教育经历:

2008年09月-2011年07月 新葡的京集团8814博士

2006年09月-2008年07月 新葡的京集团8814硕士

2002年09月-2006年07月 新葡的京集团8814学士

工作经历:

2024年10月-至今  新葡的京集团8814教授

2016年10月-2024年09月 新葡的京集团8814副教授

2015年01月-2015年09月 新加坡国立大学数学系访问学者

2014年01月-2016年09月 新葡的京集团8814讲师

2011年07月-2014年01月 北京计算科学研究中心博士后

2011年12月-2012年01月 新加坡国立大学数学系访问学者

科研项目:

1. 国家自然科学基金面上项目,偶极液滴玻色爱因斯坦凝聚态的数学分析和计算方法,2023/01-2026/12,在研,主要参加人

2. 国家自然科学基金面上项目,多尺度问题额重整化群方法,2022/01-2025/12,在研,主要参加人

3. 科技创新2030-“新一代人工智能”重大课题项目,开放环境下安全可信人机共驾测试场景构建与验证平台——2,2021/01-2024/12, 在研,主持

4. 吉林省教育厅科学技术研究项目重点项目,Darboux 变换及其在可积系统中的应用,2021/01-2023/12, 结题,主持

5. 吉林省自然科学基金学科布局,非线性涡旋系统的动力学研究,2020/01-2022/12, 结题,主持

6. 新葡的京集团8814学位学术研究生精品课程建设项目 动力系统 2020/12-2022.10, 结题,主持

7. 国家自然科学基金青年项目,非线性Schrödinger方程孤立子和怪波的数值方法,2016/01-2018/12,结题,主持。

8. 吉林省自然科学基金青年人才基金,一类非线性偏微分方程孤立子和怪波的分析与计算,2017/01-2018/12,结题,主持。

9. 吉林省教育厅科学技术研究项目,耦合非线性Schrödinger方程组孤立子的研究,2016/01-2018/12, 结题,主持。

学术论文:

[27] Yongyong Cai, Yue Feng, Yichen Guo, Zhiguo Xu, Uniform and optimal error estimates of a nested Picard integrator for the nonlinear Schrödinger equation with wave operator, Numer. Methods Partial Differ. Equations, 40 (2024), no. 6, 1-32.

[26] Zhiguo Xu, Lin Xu, Wenlei Li Shaoyun Shi, Renormalization Group Method for Singular Perturbation Initial Value Problems with Delays,  Mediterr. J. Math., 20 (2023), no. 73.

[25] Fangcheng Fan, Zhiguo Xu, Breather and rogue wave solutions for the generalized discrete Hirota equation via Darboux–Bäcklund transformation, Wave Motion, 119(2023), 103139.

[24] Fangcheng Fan, Zhiguo Xu, Shaoyun Shi, Soliton, breather, rogue wave and continuum limit for the spatial discrete Hirota equation by Darboux–Bäcklund transformation, Nonlinear Dyn., 111 (2023), no. 11, 10393-10405.

[23] Fangcheng Fan, Zhiguo Xu, Shaoyun Shi, N-fold Darboux transformation and soltion solutions for the relativistic Toda lattice equation, Rep. Math. Phys., 89 (2022), no. 1, 9-25.

[22] Yue Feng, Zhiguo Xu, Jia Yin, Uniform error bounds of exponential wave integrator methods for the long-time dynamics of the Dirac equation with small potentials, Appl. Numer, Math., 172(2022) 50-66.

[21] Zhiguo Xu, A generalized integrable hierarchy related to the relativistic Toda lattice: Hamiltonian structure, Darboux transformation, soliton solution and conservation law, Mod.Phys.Lett. B, Vol. 36,No. 02, 2150545 (2022).

[20] Lin Xu, Zhiguo Xu, Wenlei Li, Shaoyun Shi, Renormalization group approach to a class of singularly perturbed delay differential equations, Commun. Nonlinear Sci. Numer. Simulat. 103(2021)106028.

[19] Zhiguo Xu, Infinitely many solutions for the fractional p&q problem with critical Sobolev-Hardy exponents and sign-chaging weight functions, Differential and integral Equations (2021) Vol. 34, no.9-10, 519-537.

[18] FangCheng Fan, ShaoYun Shi, Zhiguo Xu, Positive and negative integrable lattice hierarchies: conservation laws and N-fold Darboux transformations, Commun. Nonlinear Sci. Numer. Simulat. 91 (2020) 105453.

[17] FangCheng Fan, ShaoYun Shi, Zhiguo Xu, Conservation laws and Darboux transformations for a3-coupled integrable lattice equations. Modern Phys. Lett. B 34(2020) no. 21, 2050218, 12pp.

[16] Fangcheng Fan, Zhiguo Xu, Shaoyun Shi, N-fold Darboux transformations and exact solutions of the combined Toda lattice and relativistic Toda lattice equation. Anal. Math. Phys. 10, 31(2020)

[15] Pengde Wang; Zhiguo Xu; Jia Yin, Simple high-order boundary conditions for computing rogue waves in the nonlinear Schrödinger equation.  Comput. Phys. Commun. 251 (2020), 107109, 13 pp.

[14] Fangcheng Fan, Shaoyun Shi, Zhiguo Xu, A hierarchy of integrable differential-difference equations and Darboux transformation, Rep. Math. Phys., 84 (2019), No. 3, 289-301.

[13] Fangcheng Fan, Shaoyun Shi, Zhiguo Xu , Infinite number of conservation laws and Darboux transformations for a 6-field integrable lattice system, Int. J. Mod. Phys., 33 (2019) 1950147,16pp.

[12] Kaiyin Huang, Shaoyun Shi, Zhiguo Xu, Integrable deformations, bi-Hamiltonian structures and nonintegrability of a generalized Rikitake system, Int. J. Geom. Methods Mod. Phys., 16 (2019), no. 4, 1950059, 17 pp.

[11] Zhiguo Xu, Weizhu Bao, Shaoyun Shi, Quantized vortex dynamics and interaction patterns in superconductivity based on the reduced dynamical law, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), no. 6, 2265-2297.

[10] Yongjun Yuan, Zhiguo Xu, Qinglin Tang, Hanquan Wang, The Numerical Study of the Ground States of Spin-1 Bose-Einstein Condensates with Spin-Orbit-Coupling, E.ASIAN. J. APPL. MATH., 8 (2018), no. 3, pp. 598-610.

[9] Zhiguo Xu, Wenlei Li, Shaoyun Shi, Higher order criterion for the nonexistence of formal first integral for nonlinear systems, Electron. J. Differential Equations, Vol. 2017 (2017), No. 274, pp. 1-11.

[8] Zhiguo Xu, Xuanchun Dong, Yongjun Yuan, Error estimates in the energy space for a Gautschi-type integrator spectral discretization for the coupled nonlinear Klein-Gordon equations. J. Comput. Appl. Math. 292 (2016), 402–416.

[7] Hanquan Wang, Zhiguo Xu, Projection gradient method for energy functional minimization with a constraint and its application to computing the ground state of spin-orbit-coupled Bose-Einstein condensates. Comput. Phys. Commun. 185 (2014), no. 11, 2803–2808.

[6] Xuanchun Dong, Zhiguo Xu, Xiaofei Zhao, On time-splitting pseudospectral discretization for nonlinear Klein-Gordon equation in nonrelativistic limit regime. Commun. Comput. Phys. 16 (2014), no. 2, 440–466.

[5] Weizhu Bao, Qinglin Tang, Zhiguo Xu, Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation. J. Comput. Phys. 235 (2013), 423–445.

[4] Zhiguo Xu, Shaoyun Shi, Fang Liu, Nonexistence and partial existence of first integrals for diffeomorphisms. Appl. Math. Lett. 23 (2010), no. 4, 399–403.

[3] Wenlei Li, Zhiguo Xu, Shaoyun Shi, Nonexistence of formal first integrals for nonlinear systems under the case of resonance. J. Math. Phys. 51 (2010), no. 2, 022703, 11 pp.

[2] Jiao, Jia, Shi, Shaoyun, Xu, Zhiguo, Formal first integrals for periodic systems. J. Math. Anal. Appl. 366 (2010), no. 1, 128–136.

[1] Fang Liu, Shaoyun Shi, Zhiguo Xu, Nonexistence of formal first integrals for general nonlinear systems under resonance. J. Math. Anal. 363(2010), no. 1, 214–219.

获奖情况:

1. 新葡的京集团8814第九届教学成果奖二等奖,第五完成人,2023

2. 吉林省本科高校智慧课堂教学创新大赛二等奖, 第二完成人,2022

3. 第十三届全国大学生数学竞赛优秀指导教师,2021

4. 第十一届全国大学生数学竞赛优秀指导教师,2019

5. 新葡的京集团8814“课堂质量奖2019

6. 吉林省自然科学学术成果奖二等奖,第三完成人,2012

社会兼职:

1. 吉林省工业与应用数学学会理事会理事(2019年1月至今)

新葡的京集团8814欧美同学会秘书长(2024年5月至今)


上一篇: 黎文磊