当前位置: 首 页 - 科学研究 - 学术报告 - 正文

新葡的京集团8814、所2023年系列学术活动(第032场):梅茗 教授 McGill University & Champlain College, 加拿大

发表于: 2023-05-02   点击: 

报告题目:Threshold convergence results for a nonlocal time-delayed diffusion equation

报告人:梅茗教授 McGill University & Champlain College, 加拿大

报告时间:2023年 5月18日 8:30-9:30

报告地点:腾讯会议 ID:526-7221-3895

或点击链接直接加入会议:https://meeting.tencent.com/dm/2QY55jYQvvoK

校内联系人:刘长春 liucc@jlu.edu.cn


报告摘要:In this talk we are concerned with the asymptotic behavior for nonlocal dispersion Nicholson blowflies equation in the n-dimensional space. By the method of Fourier transform, we first derive the decay estimates for the fundamental solutions with time-delay. Then, we obtain the threshold results with optimal convergence rates for the original solution to the constant equilibrium. Namely, when the ration of birth rate and death rate satisfies 0 < p/d < 1, the solution u(t, x) globally converges to the equilibrium 0 in the time-exponential form; when p/d = 1, the solution u(t, x) globally converges to 0 in the time-algebraical form; when 1 < p/d ≤ e, the solution u(t, x) globally converges to the non-trivial state u+ in the time-exponential form; and when e < p/d < e2, it locally converges to u+ in the time-exponential form.


This is a joint work with Rui Huang and Zhuangzhuang Wang, just published in J. Differential Equations (2023).


报告人简介:梅茗教授,加拿大McGill大学兼职教授及Champlain学院的终身教授,博士生导师。2015年被聘为吉林省“长白山学者”讲座教授,以及东北师范大学“东师学者”讲座教授。主要从事流体力学中偏微分方程和生物数学中带时滞反应扩散方程研究,在ARMA, SIAM, JDE, Commun.PDEs 等高水平杂志上发表论文100多篇,是多家SCI国际数学杂志的编委。并一直承担加拿大自然科学基金项目,魁北克省自然科学基金项目,及魁北克省大专院校国际局的基金项目。