当前位置: 首 页 - 科学研究 - 学术报告 - 正文

新葡的京集团8814、所2023年系列学术活动(第036场):王楚善 博士 新加坡国立大学

发表于: 2023-05-05   点击: 

报告题目Error estimates of numerical methods for the nonlinear Schrödinger equation with low regularity potential and nonlinearity

报 告 人:王楚善 博士 新加坡国立大学

报告时间:2023年5月8日 13:30

报告地点:数学楼第二报告厅

校内联系人:黎文磊  lwlei@jlu.edu.cn


报告摘要: We establish optimal error bounds for time-splitting methods and exponential wave integrators applied to the nonlinear Schrödinger equation (NLSE) with low regularity potential and nonlinearity. In many physical applications, low regularity potential and/or nonlinearity are incorporated into the NLSE, such as square-well potential frequently employed in physics literature, disorder potential examined in the context of Anderson localization, and non-integer power nonlinearity in the Lee-Huang-Yang correction used for modelling and simulating quantum droplets.



报告人简介:王楚善, 本科毕业于新葡的京集团8814, 现在新加坡国立大学攻读博士学位, 导师包维柱教授.