当前位置: 首 页 - 科学研究 - 学术报告 - 正文

新葡的京集团8814、所2023年系列学术活动(第045场):夏强 教授 华南农业大学

发表于: 2023-05-09   点击: 

报告题目:Adaptive testing for alphas in high-dimensional factor pricing models

报 告 人:夏强 教授

所在单位:华南农业大学

报告时间:2023年5月12日 星期五 13:30-14:30

报告地点:腾讯会议147655560

校内联系人:朱复康 zhufk@126.com


摘要:This paper proposes a new procedure to validate the multi-factor pricing theory by testing the presence of alpha in linear factor pricing models with a large number of assets. Because the market's inefficient pricing is likely to occur to a small fraction of exceptional assets, we develop a testing procedure that is particularly powerful against sparse signals. Based on the high-dimensional Gaussian approximation theory, we propose a simulation-based approach to approximate the limiting null distribution of the test. Our numerical studies show that the new procedure can deliver a reasonable size and achieve substantial power improvement compared to the existing tests under sparse alternatives, and especially for weak signals.


报告人简介:夏强,教授,博士生导师,现为华南农业大学数学与信息学院、软件学院副院长。主要从事时间序列分析和高维数据分析的研究,已经在Journal of Business & Economic Statistics、mBio、Statistica Sinica、Journal of Time Series Analysis、中国科学《数学》等国内外学术期刊上发表30余篇,出版专著2部。近年来主持国家自然科学基金重大研究计划培育项目,国家自然科学基金面上项目,国家社科基金青年项目各1项。目前担任美国数学评论评论员;广东省统计学会常务理事;广东省现场统计学会副理事长。