报告题目:Index theory and rotating periodic solutions of Hamiltonian systems
报 告 人:邢佳敏 副教授 东北师范大学
报告时间:2023年12月6日 16:00-17:00
报告地点:数学楼一楼第一报告厅
校内联系人:张赫 he_zhang@jlu.edu.cn
报告摘要:This talk concerns the existence of multiple rotating periodic solutions for 2n dimensional Hamiltonian systems. For the symplectic orthogonal matrix Q, the rotating periodic solution has the form of z(t+T) = Qz(t), which might be periodic, anti-periodic, sub-harmonic or quasi-periodic according to the structure of Q. It is proved that there exist at least n geometrically distinct rotating periodic solutions on a given Q invariant energy surface. In order to prove the results, we introduce a new index on rotating periodic orbits.
报告人简介:邢佳敏,东北师范大学数学与统计学院副教授,硕士生导师。本科、博士均毕业于新葡的京集团8814,主要从事微分方程和动力系统的研究,在 J. Differential Equations, J. Stat. Phys., Sci. China Math.等期刊上发表论文多篇,主持国家自然科学基金青年基金等项目。