当前位置: 首 页 - 科学研究 - 学术报告 - 正文

新葡的京集团8814、所2024年系列学术活动(第102场):Mi-Young Kim 韩国仁荷大学

发表于: 2024-08-27   点击: 

报告题目:Discontinuous Galerkin method with Lagrange multiplier (DGLM) for elliptic problem

报告人:Mi-Young Kim 韩国仁荷大学

时间:2024年 08月29日(星期四)9:55-10:40

地点: 正新楼209

校内联系人:王瑞姝 wangrs_math@jlu.edu.cn


报告摘要:Arbitrary high order discontinuous Galerkin methods with Lagrange multiplier (DGLM) are developed for elliptic and convection-diffusion-reaction equations. Lagrange multiplier is introduced on the edge/face of each element through the definition of a weak divergence and a weak derivative. A local weak formulation is derived by weakly imposing Dirichlet boundary condition with Lagrange multiplier on the edges/faces. The global weak formulation is given as the sum of the local problems. Stability of the method and the error estimates are derived in a broken norm. An edgewise iterative scheme for the DGLM solution is

also developed. Convergence analysis of the scheme is given. Efficiency of the iterative scheme is tested for the elliptic problem with adaptive mesh refinement. Several numerical examples are presented.


报告人简介:Mi-Young Kim 是韩国仁荷大学教授。主要的研究方向有数学生物学,非线性波,数值天气预报,不连续Galerkin有限元法,区域分解法,多尺度方法等。在 SIAM J. Numer. Anal., SIAM J. Sci. Comp., Comput. Methods Appl. Mech. Engrg.等期刊发表论文50余篇。