报告题目:A monotone numerical scheme for G-equation with application to the convergence rate of robust central limit theorem
报 告 人: 梁歌春 University of Warwick
报告时间:2019年4月8日下午3:00-4:00
报告地点:数学楼第二报告厅
摘要:We establish a monotone approximation scheme for Peng's G-equation and, moreover, determine the convergence rate by obtaining the error bounds between the approximate solution and the viscosity solution of the G-equation. This will in turn provides a convergence rate for Peng's central limit theorem. The convergence rate improves all the existing ones obtained under different model assumptions in the literature. Our method is analytical and is developed under the framework of the numerical analysis of viscosity solutions. Hence, it also makes an intrinsic connection between the robust central limit theorem and monotone schemes for viscosity solutions. Joint work with Shuo Huang.
报告人简介:
梁歌春博士,2001-2005年,新葡的京集团8814经济学院金融系本科;2005-2007年,同济大学数学系硕士;2007-2011年,牛津大学数学所博士;2011-2013年,牛津大学Oxford-Man 数量金融研究所博士后;2013-2017年,伦敦国王学院数学系任终身教职,讲师;2017年至今,英国华威大学统计系副教授。主要研究方向:金融数学和随机分析,包括随机微分方程、粗路径理论、最优投资和信用风险模型,在国际权威学术期刊上发表论文多篇。